Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

Identifieur interne : 000928 ( Main/Repository ); précédent : 000927; suivant : 000929

Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles

Auteurs : RBID : Pascal:13-0305321

Descripteurs français

English descriptors

Abstract

Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN | InGaN | GaN (core | weoll | shell) spherical quantum dot-quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0305321

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles</title>
<author>
<name sortKey="El Ghazi, Haddou" uniqKey="El Ghazi H">Haddou El Ghazi</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796</s1>
<s2>Fes-Atlas</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Fes-Atlas</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Special mathematics, CPGE Kénitra, Chakib Arsalane Street</s1>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Special mathematics, CPGE Kénitra, Chakib Arsalane Street</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Jorio, Anouar" uniqKey="Jorio A">Anouar Jorio</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796</s1>
<s2>Fes-Atlas</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Fes-Atlas</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zorkani, Izeddine" uniqKey="Zorkani I">Izeddine Zorkani</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796</s1>
<s2>Fes-Atlas</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</inist:fA14>
<country>Maroc</country>
<wicri:noRegion>Fes-Atlas</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0305321</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0305321 INIST</idno>
<idno type="RBID">Pascal:13-0305321</idno>
<idno type="wicri:Area/Main/Corpus">000721</idno>
<idno type="wicri:Area/Main/Repository">000928</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0921-4526</idno>
<title level="j" type="abbreviated">Physica, B Condens. matter</title>
<title level="j" type="main">Physica. B, Condensed matter</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Binding energy</term>
<term>Defect states</term>
<term>Donor center</term>
<term>Effective mass model</term>
<term>Gallium nitride</term>
<term>Ground states</term>
<term>Impurities</term>
<term>Indium nitride</term>
<term>Magnetic field effects</term>
<term>Nanoparticles</term>
<term>Quantum confinement</term>
<term>Quantum dots</term>
<term>Shallow level</term>
<term>Spherical particle</term>
<term>Variational methods</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Effet champ magnétique</term>
<term>Energie liaison</term>
<term>Impureté</term>
<term>Etat fondamental</term>
<term>Etat défaut</term>
<term>Niveau peu profond</term>
<term>Centre donneur</term>
<term>Modèle masse effective</term>
<term>Confinement quantique</term>
<term>Méthode variationnelle</term>
<term>Nitrure de gallium</term>
<term>Nitrure d'indium</term>
<term>Nanoparticule</term>
<term>Point quantique</term>
<term>Particule sphérique</term>
<term>GaN</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN | InGaN | GaN (core | weoll | shell) spherical quantum dot-quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0921-4526</s0>
</fA01>
<fA03 i2="1">
<s0>Physica, B Condens. matter</s0>
</fA03>
<fA05>
<s2>427</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>EL GHAZI (Haddou)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>JORIO (Anouar)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>ZORKANI (Izeddine)</s1>
</fA11>
<fA14 i1="01">
<s1>Solid State Laboratory, Faculty of science, Dhar EL Mehrez, BP 1796</s1>
<s2>Fes-Atlas</s2>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Special mathematics, CPGE Kénitra, Chakib Arsalane Street</s1>
<s3>MAR</s3>
<sZ>1 aut.</sZ>
</fA14>
<fA20>
<s1>106-109</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>145B</s2>
<s5>354000505841100180</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>37 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0305321</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Physica. B, Condensed matter</s0>
</fA64>
<fA66 i1="01">
<s0>GBR</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Simultaneous study of magnetic field and impurity's position effects on the ground-state shallow-donor binding energy in GaN | InGaN | GaN (core | weoll | shell) spherical quantum dot-quantum well (SQDQW) as a function of the ratio of the inner and the outer radius is reported. The calculations are investigated within the framework of the effective-mass approximation and an infinite deep potential describing the quantum confinement effect. A Ritz variational approach is used taking into account of the electron-impurity correlation and the magnetic field effect in the trial wave-function. It appears that the binding energy depends strongly on the external magnetic field, the impurity's position and the structure radius. It has been found that: (i) the magnetic field effect is more marked in large layer than in thin layer and (ii) it is more pronounced in the spherical layer center than in its extremities.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B70C21L</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Effet champ magnétique</s0>
<s5>02</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>Magnetic field effects</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="3" l="FRE">
<s0>Energie liaison</s0>
<s5>03</s5>
</fC03>
<fC03 i1="02" i2="3" l="ENG">
<s0>Binding energy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Impureté</s0>
<s5>04</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Impurities</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Etat fondamental</s0>
<s5>06</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Ground states</s0>
<s5>06</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Etat défaut</s0>
<s5>07</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Defect states</s0>
<s5>07</s5>
</fC03>
<fC03 i1="06" i2="X" l="FRE">
<s0>Niveau peu profond</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="ENG">
<s0>Shallow level</s0>
<s5>08</s5>
</fC03>
<fC03 i1="06" i2="X" l="SPA">
<s0>Nivel poco profundo</s0>
<s5>08</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Centre donneur</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Donor center</s0>
<s5>09</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Centro dador</s0>
<s5>09</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Modèle masse effective</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Effective mass model</s0>
<s5>10</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Modelo masa efectiva</s0>
<s5>10</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Confinement quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Quantum confinement</s0>
<s5>12</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Confinamiento cuántico</s0>
<s5>12</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Méthode variationnelle</s0>
<s5>13</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>Variational methods</s0>
<s5>13</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Nitrure de gallium</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Gallium nitride</s0>
<s5>15</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Galio nitruro</s0>
<s5>15</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Nitrure d'indium</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Indium nitride</s0>
<s5>16</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Indio nitruro</s0>
<s5>16</s5>
</fC03>
<fC03 i1="13" i2="3" l="FRE">
<s0>Nanoparticule</s0>
<s5>17</s5>
</fC03>
<fC03 i1="13" i2="3" l="ENG">
<s0>Nanoparticles</s0>
<s5>17</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>18</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>18</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Particule sphérique</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Spherical particle</s0>
<s5>19</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Partícula esférica</s0>
<s5>19</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>GaN</s0>
<s4>INC</s4>
<s5>52</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000928 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 000928 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0305321
   |texte=   Magnetic field-dependent of binding energy in GaN/InGaN/GaN spherical QDQW nanoparticles
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024